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Abstract. Giant quantum oscillations (OQO) of the coefficient of ultmsonic absorption by normal 
metals subject to a magnetic field during a 2f-order phase trmsition (PT-24) is discussed. Only 
the simplest case of the appearance (disappearance) of a spheroidal Fermi sheet associated 
with the phase transition is considered. For electron energies much higher than the threshold 
energy, the absorption coefficient is found to show cpo which me not only periodic in inverse 
magnetic field (the GurevichSkabov-Firsov (GSF) oscillations) but also in electron energy (with 
the magnetic field keptconstmt) or the size of the cavity (Z) created during the phase transition. 

1. Introduction 

Generally, sound absorption is believed to be a lattice phenomenon. But, at low enough 
temperatures T << ~TD, where TD is the Debye temperature, ultrasonic absorbtion by good 
metals is to a large extent dominated by electronic mechanisms [ I ,  2.1. 

At such ultrahigh frequencies (kl >> 1, where k is the sound wave vector and 1 is the 
mean f~ee path), the process.of sound absorption becomes a quantum phenomenon [3 ,4]  
in which individual phonons of the incident ultrasonic wave are absorbed by conduction 
electrons of the metal. Conservation of energy and momentum principles indicate that, since 
normally the Fermi velocity of the electrons is much higher than that of the sound wave, the 
elecuons that effectively absorb sound energy are,only those moving practically in a plane 
of constant phase of the sound wave at an angle close to 90" to the sound wave vector k 
or at an angle of the order of s/uF from the constant phase plane, where s is the velocity 
of the sound wave in the metal and L$Z is the F e d  velocity of the conduction electrons. 

The above statements also hold true in the presence of a magnetic field (arbitrarily 
directed along the z-axis) which in this case is assumed to be only strong enough to wipe 
out the smoothing effect of temperature. The magnetic field is not expected to alter the 
dispersion law for the conduction electrons either, which, for the sake of simplicity, is 
considered to be quadratic-isotropic. This work does not include the effect of spin splitting. 
Interested readers may refer to the work by Rodriguez 141. 

If we neglect the excitation of electrons due to transverse electric fields induced by 
the incident ulrasonic wave [SI and the possible electron-electron interaction, the ultrasonic 
absorption coefficient will be given by [l] 

where o is the Larmor frequency, n is the quantum number related to the Landau levels, 
and I'o is the absorption coefficient in the absence of magnetic field, the exact expression 
of which was first derived by Akheizer and co-workers [6].  Also, EF is the electron Fermi 
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energy, p is the electron quasimomentum and T is the temperature. The quantity pZo - ms, 
where m is the electron mass, is very small (since k is parallel to the applied magnetic field), 
and hence has little effect on the overall characteristic of rx 111. ks is the Boltzmann factor. 

Near the minimum or maximum of a given energy band the density of states shows a 
root-type singularity, termed a Van Hove singularity (VHS) [7]. VHS is characteristic of all 
energy values at which the topology of the constant-energy surface changes. Actually, a 
minimum is a point where a new Fermi sheet appears and a maximum is where an existing 
Fermi sheet disappears. 

Deep inside a given energy band we also find at least two critical values of energy E ,  
[7] having a spectral density of the type 

U(€) = UO(€) -I S V ( E )  (2) 

where uo is a smooth function of energy and 6 u  is singular and is described by the relation 

V is the volume of the crystal lattice. The electron effective masses ml, mz, and m3 are all 
positive. The discontinuity of U at 6 = ec is Characteristic of all saddle points of 6, which 
themselves are the direct result of the periodic nature of the lattice 171. If there is some 
continuously varying parameter, like pressure or impurity, in the course of whose variation 
EF - E~ passes through zero, then the singularity of the spectral density and the dynamics 
of electrons near the critical surface leads to peculiar anomalies in the thermodynamic and 
kinetic properties of the electron gas in the metal [SI, the ultrasonic absorption coefficient 
r being one. 

The phase transitions associated- with such critical values of energy are termed m-24. 
The usual appearance (or disappearance) of Fermi sheets accompanies these transitions [9- 
131. In this paper we shall be concerned only about the simplest case of the appearance (or 
disappearance) of a spheroidal sheet. 

2. Giant quantum oscillations 

The case of electronic phase transition associated with the appearance (disappearance) of a 
spheroidal Fermi sheet can be included in (1) by introducing the appropriate dispersion law 
en,,,: valid in the vicinity of the critical point E,. In the assumption that the dispersion law 
for the electrons remains quadratic-isotropic even in the presence of a magnetic field, the 
electron energy may be written as 

(4) 
= ~ , + ~ w ( n + i ) + - .  P: 

2m 

The Fermi surface of the metal is also assumed to have no interband sections. As a 
result, the ultrasonic absorption coefficient given in (1) will take the form 
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where 

and 

z = EF - EC. 

Z' - ms2/2 is a threshold of electron energy at which the anomaly of the absorption 
coefficient should begin. 

Under proper limits, (5) actually reduces to well known results. For example, in the 
limit as H approaches zero, the summation can very well be replaced by integation which 
after some algebraic work may. be shown to take the form 

Subjecting (6) to a further constraint on the temperature (T + 0), we get 

The above expression is a well known result first derived by Davydov and Kaganov 

Let us now consider the effect of finite values of magnetic field and temperature on the 
jump predicted in (7). As should be anticipated, those conduction electrons with 2 close to 
the threshold value Z*(Z* >> ksT),  due to the random orientation of their Fermi momentum 
and~also due to the adverse effect of the magnetic field, will not have the necessary 
translational motion for them to stay in constant phase with the incident longitudinal (k 
parallel to the applied magnetic field) ultrasonic wave. Therefore, the large majority of 
these electrons will not be able to significantly participate in the sound-energy absorption 
process. Consequently, in this particular case, the ultrasonic absorption coefficient rw is 
expected to be relatively small. Actually, for Z N P, (5) can be shown to reduce to the 
simple form 

u11. 

rx = row exp(-a) (8) 

where 

Since ?io >> kBT, we then find from (8) that the ultrasonic absorption coefficient at Z Y 2' 
is indeed exponentially small. The result given in (8) also shows that both magnetic field 
and temperature smear out the jump predicted in (7). In fact, it can easily be verified from 
(8) that, for both a! << 1 and a >> 1, r.q << ro. rH approaches a maximum for ho Y 2 k ~ T .  

For electron energies less than the threshold value Z*(O c z c Z*), the ultrasonic 
absorption coefficient once again is expected to be insignificantly small, but will not be at 
its absolute minimum as predicted in (7). In fact, in this case, the ultrasonic absorption 
coefficient can be shown to monotonically increase from rfin - exp(-Z*/2kBT)l?,,, at 
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Figure 1. The periodicity of the absorption coefficient I1H in inverse magnetic field as predicted 
by (9) and (IO). At very low tempenlures (- 1.5 K), it should be uossible lo Observe oscillations 
of PH for applied magnetic fields larger lhan IO kC. 

Z - 0, to r-, where r,, is the absorption coefficient given in (8). The sound absorption 
in this particular range of Z is primarily due to random scattering. 

The most dramatic and interesting region of electron energy is that in which Z >> Z" 
(Z* >> kBT). In this particular case, the ultrasonic absorption coefficient rH given in (5) 
can be rewritten as a sum of two p a :  

rH=ro+F (9) 

where the second term on the right-hand side is oscillatory with respect to both H-I and 
Z (figures 1 and 2). This term is given by 

f = ro (-) 4rr2kBT x( - l )kkcos  (s) cosech ( 2R'kkBT hw ) (10) 
f26J k l  

where 
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Electron Enerqy 

Figure 2. The periodicity of the absorption coefficient r H  in electron energy B (for arbihary 
constant applied field) as predicted by (9) and (10). Oscillations of T" are expected to be seen 
for elecaon energy much larger fhan the threshold value, Z' = ms'/Z, where s is the speed of 
a compressional wave in the material and m is the electron mass. 

The periods of oscillation in inverse magnetic field and Z are 

eh 
A(l/H) = - 

Zmc 

and 

A(Z) = ho (12) 

respectively. 

rH.f in  can be determined from (5) to be 
For the set of conditions Z - Z' > ho > k*T, first given by GSP [l], rH.- and 

and 
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respectively. From (13) and (14) then follows 

>> 1 (15) 

which shows that the oscillations of the ultrasonic absorption coefficient given by (9) and 
(IO) are indeed gigantic. These oscillations are termed GQO [I]. 

The set of conditions for observing GQO (2 - Z" >> Ao >> ~ B T )  indicate that the 
phenomenon is primarily due to those relevant states with relatively high quantum numbers, 
aregime where quantum and semiclassical approaches seem to intersect. A classical analysis 
of these conditions will then show that observation of GQO is only possible provided the de 
Broglie wavelength for the electron is much smaller than the characteristic size of the orbit 
of the electron in the magnetic field. This on the other hand means that, in order to observe 
GQo, the applied magnetic field H should be much smaller than the crystal field H,, where 

rH.min 

and a is the inter-atomic distance. Here, e is the electronic charge. 

3. Discussion and concluding remarks 

As briefly pointed out in section 1, the thermodynamic, transport and magnetic properties 
(specific heat, resistivity etc) of ordinary metals (Cu, Ag etc) largely depend upon the 
geometry of the Fermi surface. Generally, a change in the topology of the Fermi surface 
will lead to a singularity in the density of states, v, and consequently to sharp discontinuous 
changes (anomalies) of the above-mentioned properties. 

It is known that high pressures reduce the anisotropy of most of the properties mentioned 
in the preceding paragraph. Gaidukov and Itskevich (GI) have reported that the connectivity 
of the Fermi surface of zinc decreases with increasing hydrostatic compression [14]. Since 
typically Fermi surfaces of layered structures are corrugated cylinders, it is then not unusual 
for these surfaces to gradually deform into closed ones (approximate spheres) under strong 
hydrostatic compression, even though the number of eIectrons in the conduction band 
remains the same [2]. 

Generally, the values of ec at which such transitions take place are located sufficiently 
far from the Fermi energy, and therefore a relatively high hydrostatic pressure may be 
required to get to these singular points (or establish EF - cc = 0). The extent to which the 
lattice is deformed by the applied pressure, in such cases, depends upon the compressibility 
of the individual specimen. Assuming a 510% lattice deformation, the hydrostatic pressure 
we are looking at may be anywhere between 10 and 200 kbar. GI have predicted that the 
connectivity of the Fermi surface of Zn would be broken by hydrostatic pressures of about 
30 kbar [14]. 

The transitions we are considering here (the transitions that take place at EF = .zC) are 
totally different from other transitions, such as first-order phase transitions, that could also 
occur under the influence of high pressure. The transitions that take place at EF = (PT-2;) 
are the only ones that are associated with the singularity of density of states, which normally 
results in the appearance (or disappearance) of Fermi sheets. If these two transitions occur 
in a single experiment, the order in which they take place is of no important consequence 
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basically because of the large difference in the time scales involved. It must be possible to 
observe the anomalies related to FT-2; briefly even under metastable conditions., 

A large number of high-pressure experiments on solids have shown that with increasing 
pressure the resistivity of many metals shows sharp discontinuous rises [15]. For example, 
barium transits to the FCC close-packed phase under a hydrostatic pressure of about 58 kbar. 
One would not then expect, in this metal, transitions involving more efficient arrangement 
of atoms as many of the phase transitions are customarily explained. The normal behaviour 
which one would expect is a continuous decrease  in^ resistance with pressure due to a 
stiffening of the lattice. But on the contrary, for this metal, the resistance increases with 
increasing pressure in the lower-pressure part of the region of interest, and at about 140t kbar 
the resistance shows a discontinuous sharp rise. We find no conclusive explanation given 
for this particular phenomenon anywhere. If it is not a first-order phase transition, what 
could it be? It is very likely that, in this case, the metal may be experiencing a 2;-order 
phase transition. 

Going back to the case of ultrasonic absorption, without the presence of a magnetic field, 
the phase transition that occurs at EF = would result in a sharp discontinuous change 
of the ultrasonic absorption coefficient r, as first predicted by Davydov and Kaganov [9- 
121 (refer to (7)). A further increase in~hydrostatic pressure will eventually force the newly 
created Fermi sphere (cavity) to grow. This is because of the reciprocal relationship existing 
between real space and momentum space written very simply as 

1 
kF - - 

d 

where kF is the Fermi wave vector and d is the lattice dimension. Note that, in the free- 
electron model, as the atomic volume decreases under pressure, the Fermi surface grows 
but remains spherical. This is only true if the metal is isotropically compressed. In the 
presence of a small but constant quantizing field, the continuous growth of the size of 
the Fermi sphere brought about by a slowly and smoothly increasing hydrostatic pressure 
would then result, as will be fully discussed later in this section, in giant oscillations of the 
ultrasonic absorption coefficient ~ T H  (figure 2). 

From (9) and (IO), we actually derived two kinds of giant oscillation whose periods are 
given by (11) and (12) respectively. The latter defines the period of the oscillations just 
mentioned in the above paragraph. For the sake of convenience these oscillations will be 
referred to as ‘cQ6of the second kind‘ hereafter. The quantum oscillations whose period 
is given by (11) amnot new to the scientific community. They were first predicted by GSF 
[I]. These oscillations are periodic in H-’ (figure l), as clearly shown in ( I  11, and are 
essentially caused by the broadening of the gap between the Landau levels as the applied 
magnetic field is continuously increased. This in turn causes the oscillations of the density 
of states at the Fermi level, and eventually the oscillations of the ultrasonic absorption 
coefficient rH. The period given in (11) is very closely related to the de Haas-van Alphen 
period [16,17]: 

A(l/H) = 2 n h / c S ( ~ ,  p , )  (18) 

where S(e, p z )  is the extrema1 cross-section of the Fermi sphere. As is well known, 
measurements of the periods of the de Haas-van Alphen oscillations give estimates of 
the various cross-sectional areas of the Fermi surface [IS]. 

As pointed out earlier in this section, the quantum oscillations that are introduced as 
new in this work, ‘CQo of a second kind’, occur in the presence of a small but constant 
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Figure 3. A uniform increase in hydrostatic pressure will force the small section of allowed 
states on the Landau level, in which the states with momentum pa are also members, to hop 
from one lower level to the next higher level 3s the Fermi level continuously rises in energy. 
This will eventually lead to giant oscillations of TH. 

magnetic field. Hence, unlike in the previous case, the quantized energy levels now remain 
unchanged indicating that the mechanism responsible for these oscillations is essentially 
different from that which is responsible for the oscillations predicted by GSF [I]. As already 
discussed in section 1, the electrons that effectively absorb the incident sound energy are 
those satisfying the condition 

where 0 - x/2.  These electrons form a very narrow belt on the Fermi surface and are 
characterized by the quasimomentum pZo. If the position of the Fermi level (or - chemical 
potential p) is such that pzo lies in the range of allowed values of pr  (these are the values 
of quasimomentum corresponding to a section on the Landau level found within the narrow 
strip of width kBT centred on the Fermi level (figure 3)). the ultrasonic absorption coefficient 
rH will be relatively high. But now, if the hydrostatic pressure is further increased so that 
the Fermi level rises to a position where pzo no longer lies in a range of allowed values 
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of p z ,  then rH will be relatively small. This ultimately suggests that if the pressure is 
continuously and smoothly increased, the Fermi level will gradually sweep across the field 
of stationary Landau levels forcing the small section of states on the Landau level with 
z-momentum in the range of allowed values of p: (in which peo is also a member) to hop 
from one lower Landau level to the next higher Landau level (figure 3). Since each Landau 
level is characterized by a singular density of states, which is given by [19] 

the hopping eventually leads to giant oscillations of the ultrasonic absorption coefficient 
rH, as predicted in (15). The amplitude of these oscillations will continue to increase with 
pressure basically because of the fact that the number of electrons per unit volume, ne, in 
the belt increases as the three-halves power of the Fermi energy, i.e., 

(21) 312 ne a cF 

(in the nearly-free-electron model of the electron gas). 
The fractional change in pressure ( A P j P )  required to see these oscillations is - A W / E F ,  

which, since Rw << EF (one of the conditions of GQO), is expected to be small. 
As clearly shown in section 2, GQO of a second kind are expected to be seen for electron 

energies much higher than the threshold value Z'. But a couple of technical points have 
to be observed before this could finally be achieved. Firstly, in order to avoid excessive 
compression of the lattice, the applied magnetic field has to be chosen such that it is 
only strong enough to inhibit the smoothing effect of temperature, which normally initiates 
interlevel transitions of electrons. This then means that, for lattice temperature of, say, - 1.5 K, the applied field should be sufficiently larger than the required minimum value 
(- 10 kG) so that the condition fiw >> kBT is met, but it should not be too much in 
excess of - 100 kG. Secondly, since the condition stated in (19) (sometimes referred to 
as the 'surf-riding condition') is derived from the conservation of energy and momentum 
principles under a very strict assumption that the phonon momentum Ak is much smaller 
.than the Fermi momentum p ~ ,  then in order to observe GQO of the absorption coefficient, 
the ultrasonic frequency has to be kept reasonably low. 
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